

Photonics On Crystals POC-OC-122406-KTP Crystal

1. 1. Main Features

- Wide Nonlinear Optical Coefficient: Offers high nonlinear optical efficiency for a variety of laser applications.
- Broad Angular Bandwidth: Low walk-off angle ensures enhanced beam quality and stability.
- Wide Transparency Range: Operates effectively within 350 nm to 4500 nm for various wavelengths.
- **High Electro-Optic Coefficient**: Low dielectric constant with exceptional electro-optic properties for E-O modulators.
- **Chemical and Mechanical Stability**: Non-hygroscopic, thermally robust, and mechanically durable for extended usage in diverse environments.

2. Material General Description

Potassium Titanyl Phosphate (KTP) is a versatile nonlinear optical crystal widely utilized in commercial and scientific applications due to its superior optical properties. With a high nonlinear optical coefficient, KTP is a preferred choice for frequency doubling of Nd:YAG lasers and other laser systems operating at low to medium power. Its broad angular bandwidth and minimal walk-off angle make it ideal for producing high-quality beam output. The non-hygroscopic nature of KTP ensures long-term durability, even in challenging environments. Additionally, KTP crystals exhibit excellent

Photonics On Crystals

electro-optic coefficients, making them highly suitable for electro-optic modulators, waveguides, and optical communication systems.

3. General Applications and Examples

KTP crystals are renowned for their extensive applications in photonics and laser technology:

- **Frequency Doubling**: Commonly used to double the frequency of Nd:YAG lasers to generate green light at 532 nm. Examples include producing green lasers with 80% conversion efficiency.
- **Optical Parametric Oscillators (OPOs)**: Generates tunable wavelengths from 600 nm to midinfrared (4500 nm). Applications include laser source development for LiDAR and environmental monitoring.
- **Electro-Optic Modulation**: Excellent performance as modulators in optical communication systems due to high electro-optic coefficients.
- Intracavity and Extracavity Frequency Conversion: KTP crystals efficiently generate blue and red light through intracavity SHG of Nd:YAG lasers.
- **Waveguide Applications**: Low-loss optical waveguides for integrated photonics, including parametric devices and laser amplifiers.

4. Chemical and Structural Properties

Below is a table consolidating the chemical and structural attributes of KTP:

Property	Value		
Crystal Structure	Orthorhombic, Space group Pna2 ₁ , Point group mm ²		
Lattice Parameters	a = 6.404 Å, b = 10.616 Å, c = 12.814 Å		
Melting Point	~1172 °C		
Mohs Hardness	5		
Density	3.01 g/cm ³		
Thermal Conductivity	13 W/m·K		
Thermal Expansion Coefficient	$a_a = 11 \times 10^{-6} / °C, a_\beta = 9 \times 10^{-6} / °C, a_a = 0.6 \times 10^{-6} / °C$		

5. Optical and Nonlinear Optical Properties

A detailed comparison of optical properties:

Property	Value
Transparency Range	350–4500 nm

Photonics Photonics On Crystals

SHG Phase Matchable Range	497–1800 nm (Type II)
Thermal-Optic Coefficients (°C ⁻¹)	dn/dT = 1.1 × 10 ⁻⁵ , dn/dT = 1.3 × 10 ⁻⁵
Absorption Coefficients (cm ⁻¹)	<0.1% @ 1064 nm, <1% @ 532 nm
NLO Coefficients	d ₃₃ = 13.7 pm/V, d ₃₁ = 6.5 pm/V
Walk-off Angle	0.55° @ 1064 nm
Sellmeier Equations (λ in μ m)	$n_x^2 = 3.0065 + 0.03901 / (\lambda^2 - 0.04251) - 0.01327\lambda^2$
Dielectric Constant	ε _r = 13

6. Spectrum Transmission Curves

Spectrum transmission curves are available upon request, showcasing the high transparency of KTP within the 350 nm to 4500 nm range.

7. Coating Specification

KTP crystals can be provided with high-quality coatings to enhance their optical performance:

- **AR Coating**: Dual-band and broadband anti-reflection coatings for 1064 nm and 532 nm.
- **High Reflective Coatings**: Ensures reflectivity >99.8% for specific laser wavelengths.
- Custom Coatings: Available upon request for specific operational requirements.

8. Standard Fabrication Specifications

Specification	Value		
Dimension Tolerance (mm)	$W \times H (\pm 0.1) \times L (\pm 0.5/\pm 0.1)$		
Angle Tolerance	Δθ ≤ 0.25°, Δφ ≤ 0.25°		
Parallelism	<20 arc seconds		
Perpendicularity	<5 arc minutes		
Chamfer	0.1 mm @ 45°		
Surface Quality	10/5 Scratch/Dig		
Surface Flatness	λ/8 @ 633 nm		
Damage Threshold (GW/cm ²)	>1.0 @ 1064 nm, >0.3 @ 532 nm		

Photonics On Crystals

9. POC Strength and Capabilities

KTP crystals offer unmatched versatility and strength in photonics applications. Their ability to function across a broad wavelength spectrum with low absorption and high efficiency makes them an ideal solution for laser systems. The high damage threshold ensures reliability under intense operational conditions. Furthermore, the non-hygroscopic and chemically stable nature of KTP enhances its durability and reduces maintenance requirements, making it a cost-effective choice for both research and industrial applications.

10. Standard Products

Face Dimensions	Length	Theta	Phi	Coatings	Application	Price (USD)
3×3 mm	5 mm	90°	23°	AR@532+1064nm	SHG@1064nm Type I	\$110
5×5 mm	10 mm	90°	23°	AR@532+1064nm	SHG@1064nm Type I	\$150
7×7 mm	20 mm	90°	23°	AR@532+1064nm	SHG@1064nm Type I	\$200
Custom	Custom	Custom	Custom	Custom	Custom	Inquire