

POC-OC-122426-Nd:YVO4 Crystal Datasheet

1 Main Features

- 1. **High Absorption Coefficient**: Up to five times higher absorption efficiency over a wide pump wavelength range (~808 nm) compared to Nd:YAG.
- 2. Large Stimulated Emission Cross-Section: Up to three times higher at 1064 nm, offering superior lasing performance.
- 3. Low Pump Threshold: Enables higher slope efficiency for diode-pumped lasers.
- 4. **Linearly Polarized Emission**: Emission is linearly polarized due to uniaxial birefringence, eliminating undesired birefringent effects.
- 5. Wide Operating Wavelengths: Supports lasing at 1064 nm (IR) and 1342 nm for advanced applications.

2. Material General Description

Neodymium Doped Yttrium Orthovanadate (Nd:YVO4) is a highly efficient laser host crystal widely used in diode-pumped solid-state lasers, particularly for low to medium power density applications. Its absorption and emission properties surpass those of Nd:YAG, making it a superior choice for compact and efficient laser systems.

Nd:YVO4 features a wide absorption bandwidth (~808 nm), enabling efficient energy absorption even with non-ideal laser diode wavelengths. The crystal is also known for its large stimulated

<u>Https://www.poc.com.sg</u> Photonics on Crystals, A brand of *Shapeoptics Holdings* Add: Prestige Centre, #09-10, 71 BUKIT BATOK CRESCENT , Singapore 658071 Tel: +65-90799669

Photonics On Crystals

emission cross-section, which supports high-power output and superior performance in continuouswave (CW) and pulsed laser systems. Additionally, the uniaxial birefringence of Nd:YVO4 ensures linearly polarized emission, enhancing efficiency for frequency-doubling processes when combined with nonlinear crystals like LBO or KTP.

Nd:YVO4-based lasers are extensively used in a variety of applications, including precision machining, medical diagnostics, spectroscopy, and laser displays. With its compact design and high quantum efficiency, Nd:YVO4 is rapidly replacing traditional lamp-pumped laser systems in modern applications.

3. General Applications and Examples

Nd:YVO4 crystals are widely used in advanced laser systems due to their superior performance characteristics. Examples include:

1. Industrial Applications

- Laser Cutting and Engraving: High-power Nd:YVO4 lasers are used in precision machining for metal and non-metal materials.
- **Example**: Compact diode-pumped Nd:YVO4 lasers enable precise cutting and engraving of intricate patterns in electronic components.

2. Medical Applications

- **Surgical Lasers**: Nd:YVO4 lasers operating at 1064 nm are used in soft-tissue surgeries and dermatological treatments.
- **Example**: Nd:YVO4 laser systems deliver high-power, minimally invasive treatments with high precision.

3. Spectroscopy

- **Fluorescence Excitation**: High-energy Nd:YVO4 lasers are used in Raman and fluorescence spectroscopy for material and biochemical analysis.
- **Example**: Nd:YVO4 lasers with linearly polarized emission improve signal-to-noise ratios in spectroscopy systems.

4. Display and Projection

- Laser Displays: High-frequency Nd:YVO4 lasers enable vivid laser projections in entertainment and visualization applications.
- **Example**: Compact green lasers using Nd:YVO4 as the gain medium and KTP for frequency doubling are widely used in stage lighting.

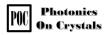
5. Scientific Research

- **Quantum Optics**: Nd:YVO4 lasers serve as reliable sources for experiments in quantum mechanics and photonics.
- **Example**: High-precision Nd:YVO4 lasers are used in quantum communication and entanglement experiments.

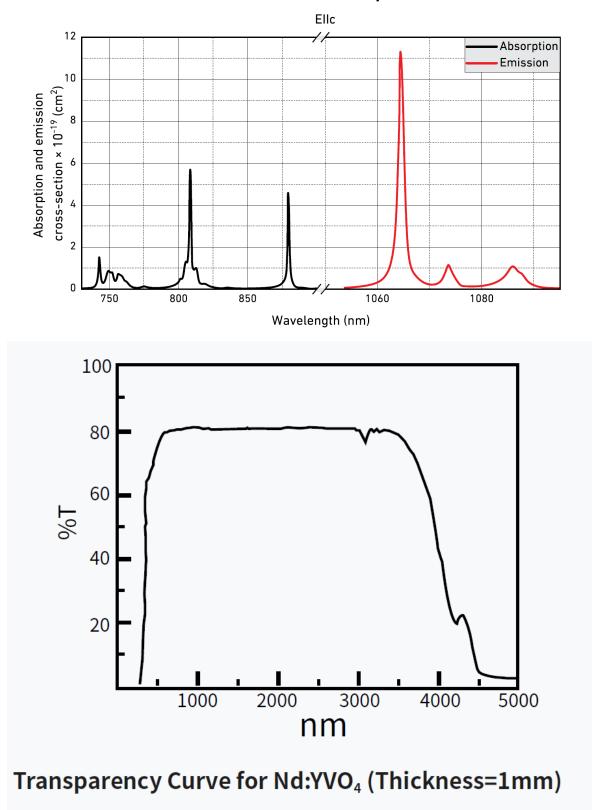
<u>Https://www.poc.com.sg</u> Photonics on Crystals, A brand of *Shapeoptics Holdings* Add: Prestige Centre, #09-10, 71 BUKIT BATOK CRESCENT, Singapore 658071 Tel: +65-90799669

4. Chemical and Structural Properties

Property	Value		
Chemical Formula	Nd:YVO4		
Crystal Structure	Zircon Tetragonal, Space Group D4h-14/amd		
Lattice Constants	a = b = 7.12 Å, c = 6.29 Å		
Density	4.22 g/cm ³		
Mohs Hardness	4–5 (Glass-like)		
Thermal Expansion	a = 4.43 × 10 ⁻⁶ /K at 300 K; c = 11.37 × 10 ⁻⁶ /K		
Thermal Conductivity	a = 5.23 W/m·K; c = 5.10 W/m·K		
Transparency Range	~400 nm to 5 μm		

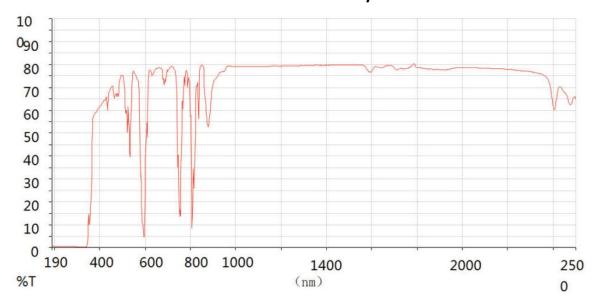

5. Optical and Laser Properties

Property	Value		
Lasing Wavelengths	1064 nm (IR), 1342 nm		
Thermal Optical Coefficient	$dn/dT = 8.5 \times 10^{-6}$ /K (n _o), $dn/dT = 2.9 \times 10^{-6}$ /K (n _e)		
Stimulated Emission Cross-Section	25 × 10 ⁻¹⁹ cm ² at 1064 nm		
Fluorescent Lifetime	90 μs (1% Nd doping)		
Absorption Coefficient	31.4 cm ⁻¹ at 808 nm		
Intrinsic Loss	0.02 cm ⁻¹ at 1064 nm		
Gain Bandwidth	0.96 nm at 1064 nm		
Polarized Laser Emission	π -Polarization, parallel to optical c-axis		
Diode Pumped Efficiency	>60%		


6. Spectrum Transmission Curves

Nd:YVO4 crystals exhibit high transparency over a wide range, from visible to infrared wavelengths (400 nm to 5 μ m). A typical absorption curve for 0.5% Nd:YVO4 indicates efficient energy absorption at 808 nm for diode pumping, with minimal absorption losses across other wavelengths.

(Graphical data available upon request.)



Photonics On Crystals

Photonics On Crystals

7. Coating Specification

Coating Type	Specifications
AR Coating	R < 0.2% at 808 nm; R < 0.1% at 1064 nm
Custom Coatings	Gold or chrome plated; available on request

8. Standard Fabrication Specifications

Specification	Value		
Dimension Tolerance	±0.1 mm (standard); ±0.005 mm (high precision)		
Clear Aperture	Central 95% of the diameter		
Surface Quality	20-10 Scratch-Dig		
Surface Flatness	λ/8 at 633 nm		
Parallelism	<10 arc seconds		
Perpendicularity	<5 arc minutes		
Chamfer	0.1 mm at 45°		
Damage Threshold	>15 J/cm ² (10 ns, 10 Hz at 1064 nm)		

9. POC Strength and Capabilities

Photonics On Crystals (POC) is a leader in the fabrication and customization of high-quality Nd:YVO4 crystals for advanced photonics applications. Key strengths include:

Photonics On Crystals

- **Customization**: Tailored sizes, doping concentrations, and coatings to meet specific user requirements.
- **Precision Manufacturing**: High-precision fabrication ensures consistency and reliability for all crystals.
- **Technical Support**: Expert guidance for integrating Nd:YVO4 crystals into laser systems.

10. Standard Products

Product Code	Dimensions (mm)	Doping Level (Nd)	Coating	Price (USD)
NDYVO4-01	3 × 3 × 0.5	1.0%	AR @ 808 nm / 1064 nm	Request Quote
NDYVO4-02	6×6×1	1.0%	Customizable	Request Quote
NDYVO4-03	10 × 10 × 2	0.5%	Customizable	Request Quote
Custom- NDYVO4	Customizable	Customizable	Customizable	Request Quote