

POC-OC-122428-Nd:YAG Crystal Datasheet

1 Main Features

- 1. **High Optical Quality**: High efficiency and low absorption loss at 1064 nm, ensuring superior performance in laser systems.
- 2. **Excellent Thermal Conductivity**: Supports high power density and stable operation.
- 3. **Versatile Applications**: Suitable for CW, pulsed, Q-switched, and mode-locked laser operations.
- 4. Mechanical Strength: High durability and resistance to thermal shock for long-term use.
- 5. **Custom Configurations**: Available in rods, slabs, and coated configurations for specific needs.

2. Material General Description

Neodymium Doped Yttrium Aluminum Garnet (Nd:YAG) is one of the earliest and most widely used laser host crystals. It combines outstanding optical, thermal, and mechanical properties, making it a ubiquitous choice for near-infrared solid-state laser systems. Its cubic crystal structure ensures isotropic optical behavior, eliminating the need for polarization correction in most applications.

Nd:YAG exhibits high thermal conductivity, excellent optical homogeneity, and low laser-induced damage thresholds, making it ideal for both high-power and low-power laser operations. With an

emission wavelength of 1064 nm and a strong absorption band at 808 nm, Nd:YAG efficiently converts pump energy into laser output with minimal losses.

Due to its reliability, Nd:YAG is used in diverse fields such as industrial machining, medical treatments, scientific research, and military applications. The crystal is available in a variety of dopant concentrations, dimensions, and coatings to meet specific operational requirements.

3. General Applications and Examples

Nd:YAG crystals are essential in numerous industries due to their versatility and high performance. Below are some key applications:

1. Industrial Applications

- Laser Machining and Welding: High-power Nd:YAG lasers are used for precision cutting, drilling, and welding.
- **Example**: Nd:YAG lasers are employed in automotive manufacturing for joining metal components.

2. Medical Applications

- **Surgical Lasers**: Nd:YAG lasers operating at 1064 nm are used in soft tissue surgeries and tattoo removal.
- **Example**: Nd:YAG lasers provide precision and control in ophthalmic and dermatological treatments.

3. Scientific Research

- **Nonlinear Optics**: Nd:YAG lasers are used as pump sources for frequency doubling and parametric generation.
- Example: Nd:YAG lasers enable generation of green light at 532 nm using KTP crystals.

4. Military and Defense

- Range Finding and Targeting: Compact Nd:YAG laser systems are used in range finders and laser designators.
- **Example**: Nd:YAG lasers provide long-range accuracy in military-grade equipment.

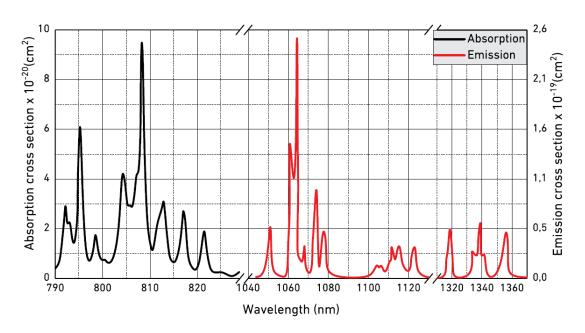
5. Display and Entertainment

- Laser Light Shows: High-power Nd:YAG lasers generate vibrant displays for entertainment.
- **Example**: Laser projectors utilizing Nd:YAG crystals produce colorful, high-resolution imagery.

4. Chemical, Physical, and Structural Properties

Property	Value

Chemical Formula	Nd:Y3Al5O12
Crystal Structure	Cubic
Lattice Constant	12.01 Å
Density	4.56 g/cm ³
Melting Point	1970 °C
Mohs Hardness	8.5 (High mechanical strength)
Thermal Conductivity	14 W/m·K at 20 °C; 10.5 W/m·K at 100 °C
Thermal Expansion Coefficient	7.8 × 10 ⁻⁶ /K (<111>)
Refractive Index	1.82 at 1064 nm
Stimulated Emission Cross-Section	2.8 × 10 ⁻¹⁹ cm ² at 1064 nm


5. Optical, Laser, and Nonlinear Optical Properties

Property	Value
Lasing Wavelength	1064 nm
Pump Wavelength	807.5 nm
Relaxation Time of Terminal Lasing Level	30 ns
Fluorescent Lifetime	550 μs
Loss Coefficient	0.003 cm ⁻¹ at 1064 nm
Linewidth	0.6 nm
Polarized Emission	Unpolarized
Thermal Birefringence	High

6. Spectrum Transmission Curves

Nd:YAG crystals have a high transmission efficiency at 1064 nm and a strong absorption peak at 807.5 nm, ideal for diode pumping. Spectrum transmission curves show excellent transparency across visible and near-infrared wavelengths, ensuring minimal loss during operation.

(Graphical data available upon request.)

7. Coating Specification

Coating Type	Specifications
HR Coating	R > 99.8% at 1064 nm, R < 0.5% at 808 nm
AR Coating	R < 0.2% at 1064 nm, R < 0.5% at 808 nm
Custom Coatings	Available upon request

8. Standard Fabrication Specifications

Specification	Value		
Dimension Tolerance	±0.1 mm (standard); ±0.01 mm (high precision)		
Clear Aperture	Central 90% of the diameter		
Surface Quality	10-5 Scratch-Dig		
Surface Flatness	λ/8 at 633 nm		
Parallelism	<20 arc seconds		
Perpendicularity	<5 arc minutes		
Chamfer	0.2 mm at 45°		
Damage Threshold	>500 MW/cm² at 1064 nm (10 ns, 10 Hz)		

9. POC Strength and Capabilities

Photonics On Crystals (POC) is a trusted supplier of high-quality Nd:YAG crystals. Our capabilities include:

- **Custom Fabrication**: Tailored dimensions, dopant concentrations, and coatings to meet specific requirements.
- **Precision Engineering**: Advanced production techniques ensure optical homogeneity and high damage thresholds.
- **Global Support**: Expertise in integrating Nd:YAG crystals into diverse laser systems.

10. Standard Products

Product Code	Dimensions (mm)	Doping Level (Nd)	Coating	Price (USD)
NDYAG-01	3 × 3 × 0.5	1.0%	AR @ 808 nm / 1064 nm	Request Quote
NDYAG-02	6 × 6 × 1	0.6%	Customizable	Request Quote
NDYAG-03	10 × 10 × 2	1.1%	Customizable	Request Quote
Custom- NDYAG	Customizable	Customizable	Customizable	Request Quote