

POC-OC-122458-Er: Yb: Phosphate Glass Datasheet

1 Main Features

- Long lifetime of the **4l11/2** erbium energy level.
- High energy transfer efficiency between Yb to Er ions.
- Wide absorption and emission cross-sections for improved performance.
- Large bandwidth in absorption and emission, enabling versatile laser applications.
- Custom crystals are available on request for specific laser designs.

2. Material General Description

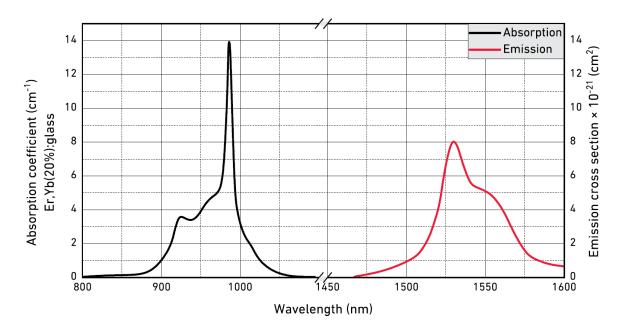
Er,Yb:Phosphate Glass is a co-doped glass known for its excellent laser performance in the "eye-safe" spectral range of 1.5–1.6 μ m. The material combines an extended erbium upper laser level lifetime (~8 ms) with a short lifetime (~2–3 ms) of the energy transfer stage between Yb and Er ions. This unique configuration allows efficient energy transfer, minimizing back-energy losses and improving overall system efficiency. Additionally, phosphate glass exhibits a low phonon energy, reducing non-radiative relaxations and enhancing luminescence quantum efficiency. Due to its superior optical and mechanical properties, Er,Yb:Phosphate Glass is widely used for creating compact, energy-efficient lasers operating in demanding applications.

3. General Applications and Examples

- Range Finding: Ideal for passively Q-switched lasers used in rangefinder systems due to its "eye-safe" wavelength of 1.5–1.6 μm.
- **LIDAR**: Reliable performance in light detection and ranging systems for industrial and environmental monitoring.
- **LIBS Systems**: Suitable for Laser-Induced Breakdown Spectroscopy applications for material analysis.
- **Medical Applications**: Can be implemented in laser treatments requiring precise and safe emission wavelengths.
- **Defense**: Utilized in advanced targeting and distance measurement technologies due to its robust energy transfer efficiency and reliability in extreme conditions.

4. Chemical, Physical, and Structural Properties

Property	Unit	Value
Absorption Peak Wavelength	nm	970
Absorption Cross-Section	cm²	1.7×10^{-20}
Absorption Bandwidth	nm	20
Laser Wavelength	nm	1534
Emission Cross-Section	cm²	8 × 10 ⁻²⁰
Density	g/cm³	2.93
Mohs Hardness	-	6
Thermal Conductivity	W/m·K	0.65
dn/dT (Refractive Index Change)	K ⁻¹	-2.1 × 10 ⁻⁶
Thermal Expansion Coefficient	K ⁻¹	$0.3-1.3 \times 10^{-6}$
Typical Doping Levels	-	0.1–1.0% (Er), 1.7–4% (Yb)


5. Optical, Laser, or Nonlinear Optical Properties

Property	Value
Refractive Index at 1534 nm	1.52
Yb to Er Energy Transfer Efficiency	High
Emission Lifetime (4I11/2 level)	~8 ms
Absorption Edge	~970 nm

<u>Https://www.poc.com.sg</u> Photonics on Crystals, A brand of *Shapeoptics Holdings*Add: Prestige Centre, #09-10, 71 BUKIT BATOK CRESCENT, Singapore 658071 Tel: +65-90799669

6. Spectrum Transmission Curves

A comprehensive transmission spectrum (graph shown) reveals the high absorption at ~970 nm and a strong emission at ~1534 nm, with minimal losses and consistent transmission efficiency over a broad wavelength range.

7. Coating Specification

Standard AR coatings available for dual wavelengths:

- AR(R < 0.2%) @ 940 nm
- AR(R < 0.2%) @ 1535 nm

Customized coatings available upon request.

8. Standard Fabrication Specifications

Property	Value	
Clear Aperture	>90%	
Face Dimensions Tolerance	±0.01 mm	
Length Tolerance	±0.1 mm	
Parallelism Error	<20 arcsec	
Perpendicularity Error	<10 arcmin	
Surface Quality	20–10 S/D	

Surface Flatness	λ/10 @ 632.8 nm
Mount	Unmounted

9. POC Strength and Capabilities

Photonics On Crystals (POC) specializes in high-quality optical crystals, providing tailored solutions for advanced photonics applications. With state-of-the-art facilities and expertise in material engineering, POC offers:

- Customizable crystal dimensions and doping levels.
- Industry-grade AR coatings for optimized optical performance.
- Proven track record in delivering precise and reliable laser components.
- Robust R&D support to meet unique application demands.

10. Standard Products

Face Dimensions	Length	End Faces	Doping	Coatings	Price (USD)
3 × 3 mm	5 mm	Brewster-angle cut	Yb: 20%, Er: 1%	Uncoated	370
3 × 3 mm	10 mm	Right-angle cut	Yb: 20%, Er: 0.5%	AR@940 nm + 1535 nm	435
3 × 3 mm	10 mm	Right-angle cut	Yb: 20%, Er: 0.5%	AR@940 nm + 1535 nm	435
Customization	Any	Any	Any	Upon request	Upon Request

This datasheet consolidates all technical details for **Er,Yb:Phosphate Glass** offered by **Photonics On Crystals (POC)**.