

1 Main Features:

POC

- Strong absorption bands optimized for laser diode pumping.
- Weak thermal lensing for stable operation.
- High polarization purity suitable for advanced laser designs.
- Cross-relaxation process creates higher ion efficiency.
- Custom crystal specifications available upon request.

2. Material General Description:

Tm:YLF (Thulium-doped Lithium Yttrium Fluoride) crystal is an advanced laser medium featuring high absorption peaks around 792 nm, making it ideal for laser diode pumping. Its unique cross-relaxation process doubles the number of ions in the upper laser level, enhancing the efficiency of each pump photon. Tm:YLF crystals are widely used as a pump source for Ho:YAG lasers due to the good overlap of their emission and absorption spectra. Additionally, the thermal refractive index of Tm:YLF decreases with temperature, leading to a negative thermal lens effect, which, when combined with end-face bulging compensation, ensures excellent beam stability and performance. This crystal's superior polarization purity and stable operation make it ideal for high-precision applications.

Photonics On Crystals

3. General Application and Examples:

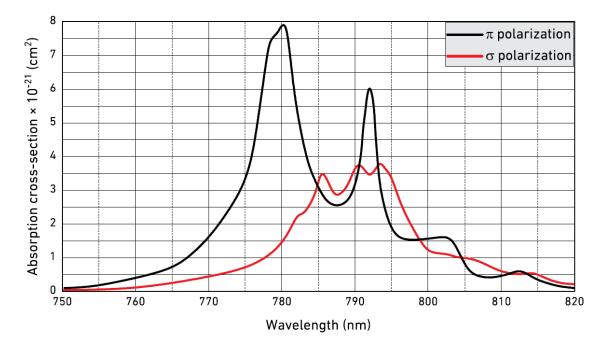
Tm:YLF crystals are used in a variety of applications, including:

- LiDAR Systems: Used in remote sensing for environmental monitoring and mapping.
- **Pump Source for Ho:YAG Lasers**: Facilitates efficient energy transfer and polarized laser output.
- **Medical Lasers**: Ideal for surgical and therapeutic applications requiring precise output and stability.
- Industrial Lasers: Enables high-powered, efficient cutting and welding operations.
- **Defense Systems**: Suitable for range-finding, target designation, and secure communication lasers.

By leveraging Tm:YLF's unique properties, these applications achieve high power output, precise targeting, and low thermal distortion, making this crystal indispensable in cutting-edge laser systems.

Property	Specification		
Orientation	c-cut		
Clear Aperture	>90%		
Face Dimensions Tolerance	±0.1 mm		
Length Tolerance	±0.1 mm		
Parallelism Error	<20 arcsec		
Perpendicularity Error	<10 arcmin		
Protective Chamfers	<0.1 mm at 45°		
Surface Quality	20-10 S-D		
Surface Flatness	λ/10 @ 632.8 nm		
Crystal Structure	Tetragonal		
Density	3.99 g/cm ³		
Thermal Conductivity	6 W/m·K		
Mohs Hardness	5		
dn/dT	-4.6 x 10^-6 (°C)^-1		
Typical Doping Level	2-4 at.%		

4. Chemical, Physical, and Structural Properties:


Photonics On Crystals

5. Optical, Laser, or Nonlinear Optical Properties:

Optical Property	Specification	
Absorption Peak Wavelength	792 nm	
Absorption Cross-Section at Peak	0.55 x 10^-19 cm ²	
Absorption Bandwidth at Peak	~5 nm	
Laser Wavelength	1900 nm	
Lifetime of Tm³⁺ Energy Level	16 ms	
Emission Cross-Section @ 1900 nm	0.4 x 10^-19 cm ²	
Refractive Index @ 1064 nm	n _o = 1.448, n _e = 1.446	

6. Spectrum Transmission Curves:

• Absorption and emission spectra have been optimized for diode pumping at 792 nm and laser output at 1900 nm. This data is critical for system design and alignment.

7. Coating Specification:

Coating	Specification	
Anti-Reflective Coating (AR)	R < 0.3% @ 792 nm and 1800-1960 nm	
Custom Coating Options	Available upon request	

8. Standard Fabrication Specifications:

<u>Https://www.poc.com.sg</u> Photonics on Crystals, A brand of *Shapeoptics Holdings* Add: Prestige Centre, #09-10, 71 BUKIT BATOK CRESCENT , Singapore 658071 Tel: +65-90799669

Photonics On Crystals

Specification	Value
Orientation	c-cut
Face Dimensions Tolerance	±0.1 mm
Surface Quality	20-10 S-D
Surface Flatness	λ/10 @ 632.8 nm
Parallelism Error	<20 arcsec
Protective Chamfers	<0.1 mm at 45°
Laser-Induced Damage Threshold (LIDT)	>10 J/cm ² @ 1900 nm, 10 ns

9. POC Strength and Capabilities:

Photonics On Crystals (POC) specializes in providing high-quality laser crystals tailored to advanced applications. With years of experience in manufacturing, POC delivers superior optical and thermal performance, enabling precision in high-power laser systems. Our state-of-the-art fabrication techniques ensure strict tolerances, superior coatings, and customizable designs for a wide range of applications, including LiDAR, medical, and industrial sectors. Partnering with POC ensures access to cutting-edge photonic solutions.

10. Standard Products:

Face Dimensions	Length	End Faces	Doping	Coatings	Price (USD)
3 x 3 mm	8 mm	Brewster-angle cut	3%	Uncoated	540
3 x 3 mm	8 mm	Right-angle cut	3%	AR@792 nm + 1800- 1960 nm	590
Custom Size	Custom	Upon Request	Custom	Upon Request	Custom Pricing

If you need further customization or additional product details, feel free to contact **Photonics On Crystals (POC)**. We specialize in providing advanced solutions for photonic applications.