

Photonics On Crystals

POC-OC-122479-Quartz Crystal Datasheet

1 Main Features

- High transmission in UV to IR regions, ranging from 0.18 to 3.5 μ m and 40 to 100 μ m.
- Positive birefringent material, suitable for wave retardation applications.
- Exceptional thermal properties with high melting point (1710°C).
- Hard and insoluble in water, suitable for various optical and thermal applications.
- High optical homogeneity with low absorption losses.

2. Material General Description

Quartz Crystal (SiO₂) is a naturally occurring mineral, although most modern applications utilize synthetic quartz grown in controlled conditions to produce high-purity, large-sized crystals. Quartz is a positive birefringent material with applications in wave retardation (e.g., quarter-wave plates) and polarizers. Unlike fused quartz, crystalline quartz offers distinct properties such as birefringence and a structured molecular arrangement.

Due to its high mechanical strength and thermal resistance, Quartz Crystal is ideal for applications involving elevated temperatures, although it should not be processed above 490°C to avoid

Photonics On Crystals

structural degradation. The material's optical transmission properties make it a versatile choice for UV and IR optical systems, including scientific, industrial, and defense technologies.

3. General Application Examples

Quartz Crystals are extensively used in both optical and mechanical applications due to their birefringence, optical transparency, and thermal resistance:

- **Optical Retardation Plates:** Utilized in polarizers and wave retarders for precision optical systems in microscopy, spectroscopy, and astronomy.
- Laser Applications: Common in laser systems as substrates and waveguides due to their ability to withstand thermal shock and maintain stability under high power.
- **UV and IR Optics:** Widely used for optical windows, prisms, and lenses in spectrometers, thermal imaging, and astronomy.
- **High-Temperature Environments:** Quartz is employed in industrial applications where high temperatures (up to 490°C) and mechanical durability are essential.
- **Electronic Devices:** Used as a resonator material in frequency control applications such as oscillators and filters in RF devices.

4. Chemical, Physical, and Structural Properties

Property	Value	
Density	2.649 g/cm ³	
Melting Point	1710°C	
Thermal Conductivity	10.7 W·m ⁻¹ ·K ⁻¹ (parallel)	
	6.2 W·m ⁻¹ ·K ⁻¹ (perpendicular)	
Thermal Expansion	7.1 × 10 ⁻⁶ K ⁻¹ (parallel)	
	$13.2 \times 10^{-6} \text{ K}^{-1}$ (perpendicular)	
Hardness (Knoop)	741 with 500g indenter	
Specific Heat Capacity	710 J·Kg ⁻¹ ·K ⁻¹	
Dielectric Constant	4.34 (parallel)	
	4.27 (perpendicular)	
Elastic Coefficients	C11=87 GPa, C12=7 GPa	
	C44=58 GPa, C33=106 GPa	
Molecular Weight	60.06	
Structure	Trigonal (hexagonal), P3(2)21	

<u>Https://www.poc.com.sg</u> Photonics on Crystals, A brand of *Shapeoptics Holdings*Add: Prestige Centre, #09-10, 71 BUKIT BATOK CRESCENT, Singapore 658071 Tel: +65-90799669

Photonics On Crystals

Birefringence (dn/dT)	-5.5 × 10 ⁻⁶ (parallel)	
	$-6.5 \times 10^{-6} \text{ K}^{-1}$ (perpendicular)	

5. Optical, Laser, and Nonlinear Optical Properties

Optical Property	Value	
Transmission Range	0.18 to 3.5 μm; 40 to 100 μm	
Refractive Index (No)	1.54421 at 0.6 μm	
Refractive Index (Ne)	1.55333 at 0.6 μm	
Reflection Loss (2 surfaces)	8.8% at 0.6 μm	
Absorption Coefficient	Negligible	
Reststrahlen Peak	Not applicable	
Thermo-optic Coefficients	$dn/d\mu = 0$ at 1.3 μm	
	$dn/dT = -5.5 \times 10^{-6} \text{ K}^{-1} \text{ (para)}$	
	$dn/dT = -6.5 \times 10^{-6} \text{ K}^{-1} \text{ (perp)}$	

6. Spectrum Transmission Curves

Quartz Crystals exhibit high transmission rates from UV to IR spectra. For example:

- UV Range (200 nm to 400 nm): Quartz shows >80% transmission.
- IR Range (2 μm to 3 μm): Transmission efficiency remains consistently high (>85%).

Detailed transmission data can be illustrated in a graph showing %T over a range of wavelengths from 0.18 to $3.5~\mu m$.

7. Coating Specification

Quartz Crystals can be coated for enhanced transmission and reduced reflection in various spectral ranges:

- UV AR Coatings: Enhances UV light transmission efficiency up to 95%.
- Broadband AR Coatings: Optimized for both UV and IR ranges for multifunctional optical systems.
- **Custom Coatings:** Available upon request for specialized optical systems.

8. Standard Fabrication Specifications

Specification	Value	
Flatness	λ/4 at 632.8 nm	
Surface Quality	40-20 scratch-dig	
Parallelism	<1 arc minute	
Clear Aperture	>90%	
Chamfer	<0.25 × 45°	
Dimensional Tolerance	±0.1 mm	

9. POC Strength and Capabilities

Photonics On Crystals (POC) excels in producing high-quality Quartz Crystals with customized specifications to meet the most demanding industrial and scientific applications:

- Expertise in high-precision fabrication for optical and thermal systems.
- Advanced coating technologies for optimized performance in UV, visible, and IR ranges.
- A strong focus on research and development to innovate optical crystal applications.
- OEM capabilities to support custom-designed Quartz Crystal solutions.

10. Standard Products and Customization

Product	Specifications	Price (USD)
Quartz Window	20 mm × 2 mm, AR-coated	\$250
Quartz Plate	50 mm × 5 mm, uncoated	\$450
Quartz Prism	Custom shape, coated	\$650
Custom Specifications	Tailored designs	Contact for pricing