

Photonics On Crystals

POC-OC-122507-Raman Diamond Crystal Datasheet

1 Main Features

- High Raman gain coefficient, achieving exceptional Raman frequency shifts of 1332 cm⁻¹.
- Superior thermal conductivity (>2000 W/m·K) for high-power laser applications.
- Excellent optical transparency and low scattering loss in broad spectral ranges.
- Stable crystal quality with high durability and resistance to environmental sensitivity.
- Customizable dimensions and anti-reflective coatings tailored for specific applications.

2. Material General Description

Raman Diamond, synthesized through Chemical Vapor Deposition (CVD), is an advanced optical material known for its exceptional Raman scattering properties and optical clarity. Featuring a Raman frequency shift of 1332 cm⁻¹ and a linewidth of 1.5 cm⁻¹, it enables precise frequency modulation and efficient Raman amplification. Compared to other Raman materials, such as KGW and YVO₄, Raman Diamond offers significantly higher gain and superior thermal conductivity, ensuring reliable performance under high-power conditions. Its low defect density, combined with extraordinary thermal and mechanical properties, makes it an ideal choice for laser and spectroscopic systems requiring both efficiency and stability.

3. General Applications and Examples

Raman Diamond is extensively used in high-end optical applications due to its unique properties:

- 1. **Raman Lasers**: Effective for wavelength-shifting and frequency-stabilized lasers, offering enhanced efficiency with reduced sensitivity to environmental changes.
- 2. **Spectroscopy**: Ideal for Raman spectroscopy systems requiring high-resolution Raman shifts with minimal noise interference.
- 3. **High-Power Laser Systems**: Applied as Raman amplifiers in industrial and scientific high-power laser systems, capable of handling demanding thermal and mechanical stresses.
- 4. **Quantum Optics**: Suitable for single-photon experiments and other advanced quantum applications.
- 5. **Nonlinear Optics**: Utilized in harmonic generation and frequency mixing due to its exceptional optical properties.

4. Chemical, Physical, and Structural Properties

Property	Value		
Raman Frequency Shift	1332 cm ⁻¹		
Linewidth	1.5 cm ⁻¹		
Thermal Conductivity	>2000 W/m·K		
Raman Gain	15		
Crystal Size	8 mm		
Refractive Index	2.41		
Density	3.52 g/cm ³		

5. Optical, Laser, and Nonlinear Optical Properties

Parameter	CVD Raman Diamond	KGW	YVO ₄	Ba(NO₃)₂
Raman Gain	15	4	5	11
Raman Frequency (cm ⁻¹)	1332	901	892	1047
Thermal Conductivity (W/m·K)	>2000	5	5.2	1.2
Crystal Factor	1440	3	20	1
Size (mm)	8	25	25	25

6. Spectrum Transmission Curves

<u>Https://www.poc.com.sg</u> Photonics on Crystals, A brand of *Shapeoptics Holdings*Add: Prestige Centre, #09-10, 71 BUKIT BATOK CRESCENT, Singapore 658071 Tel: +65-90799669

Photonics On Crystals

The absorption curve highlights a low-loss characteristic in Raman Diamond. Its superior optical clarity across UV to IR wavelengths makes it indispensable in high-performance laser and spectroscopic systems.

7. Coating Specification

- Anti-Reflective (AR) Coating for optimal transmission at 532 nm, 1064 nm, and other custom wavelengths.
- Coating durability: Designed to withstand high laser power and extended operational lifetimes.

8. Standard Fabrication Specifications

Parameter	Specification
Crystal Dimensions	6 x 2 x 2 mm
Surface Flatness	<λ/10 at 632.8 nm
Parallelism	<3 arcseconds
Clear Aperture	>90%
Surface Roughness	<3 nm

9. POC Strength and Capabilities

Photonics On Crystals (POC) leverages state-of-the-art CVD technology to produce Raman Diamond Crystals with exceptional quality. Our facilities ensure consistent, high-purity crystals with customizable dimensions, offering tailored solutions for demanding applications in nonlinear optics, quantum technologies, and laser systems.

10. Standard Products

Size (mm)	Coating	SKU	Price (USD)
6 x 2 x 2	AR (532 nm)	2001	900
8 x 8 x 2	AR (1064 nm)	2002	1,200
Custom Size	Upon Request	Custom	Quote