

1 Main Features

- High applicability for THz wave generation, detection, and optical limiters.
- Exceptional purity levels ranging from 99.995% to 99.999%.
- Maximum aperture size of 30 mm × 30 mm and minimum thickness of 0.01 mm.
- High-quality ZnTe crystals with [100] and [111] crystal orientations available.
- Outstanding electro-optic coefficient (y41 = 4.0 pm/V) for advanced applications.

2. Material General Description

Zinc Telluride (ZnTe) is a direct-bandgap II-VI compound semiconductor material with a cubic zinc blende crystal structure. It is an ideal electro-optic crystal widely utilized in terahertz (THz) wave generation and detection due to its exceptional optical and electronic properties. With a wide range of applications, ZnTe crystals boast high transmission efficiency in the mid-infrared (7-12 μ m) and visible spectrum.

The crystal's intrinsic qualities include a high electro-optic coefficient, moderate birefringence, and excellent purity levels that contribute to its performance in high-power and ultrafast laser systems. Its compact lattice structure ensures low defect density, making it a reliable choice for industrial-grade THz imaging and spectroscopy applications. Furthermore, ZnTe's ability to support ultra-thin and large-area production makes it a versatile option for demanding optical setups.

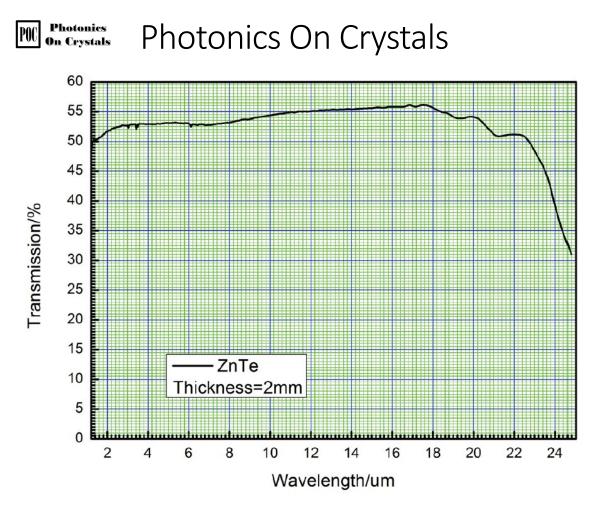
3. General Applications and Examples

ZnTe crystals are extensively utilized in a variety of high-performance optical and electronic fields:

• **Terahertz Wave Generation and Detection**: ZnTe serves as a critical nonlinear optical material for efficient THz wave production via optical rectification and its detection using electro-optic sampling.

Photonics On Crystals

- **Electro-Optic Devices**: With its high electro-optic coefficient, ZnTe is integrated into modulators and other advanced photonics applications.
- **Optical Limiters and Detectors**: ZnTe demonstrates exceptional transmission properties, making it valuable for optical limiters and mid-infrared detectors.
- **Spectroscopy and Imaging**: Widely employed in THz spectroscopy and imaging systems, ZnTe enables the precise identification of materials and structures due to its excellent bandwidth capabilities.


Property	ZnTe Crystal		
Crystal Structure	Cubic Zinc Blende		
Lattice Constant	a = 6.1034 nm		
Density	5.633 g/cm ³		
Bandgap	2.26 eV		
Transparency Range	7-12 μm		
Transmission Efficiency	60% (7-12 μm)		
Refractive Index	n (λ=10.6 μm) = 2.7		
Electro-Optic Coefficient	y41 = 4.0 pm/V		
Electrical Resistivity	Low: $<10^3 \Omega \cdot cm$, High: $>10^9 \Omega \cdot cm$		

4. Chemical, Physical, and Structural Properties

5. Optical, Laser, or Nonlinear Optical Properties

Wavelength (λ)	Refractive Index (n)	Transparency (%)	Electro-Optic Efficiency
7 μm	2.8	60%	High
10.6 µm	2.7	55%	High
12 µm	2.6	50%	Moderate

6. Spectrum Transmission Curve

7. Coating Specification

• ZnTe Crystals are typically delivered uncoated to preserve their surface integrity. Antireflective coatings are available upon request depending on application-specific requirements.

8. Standard Fabrication Specifications

Specification	Parameter		
Aperture Size	Up to 30 × 30 mm		
Minimum Thickness	0.01 mm		
Crystal Orientation	[100] or [111]		
Surface Flatness	<λ/10		
Surface Roughness	Ra < 0.01 nm		

9. POC Strength and Capabilities

Photonics On Crystals (POC) excels in delivering high-quality ZnTe crystals tailored for THz applications. With advanced manufacturing processes and precision control, POC provides large-aperture crystals with minimal defect density, ensuring high performance across optical and electronic applications. POC also specializes in custom fabrication and electro-optic crystal bonding for enhanced utility.

10. Standard Products

Photonics On Crystals

Clear Aperture	Thickness	Orientation	Coating	Price (USD)	Customization Available
30 × 30 mm	0.5 mm	[100]	Uncoated	\$2,500	Yes
20 × 20 mm	1.0 mm	[111]	Uncoated	\$2,000	Yes
15 × 15 mm	2.0 mm	[100]	Uncoated	\$1,500	Yes